Fabrication and Characterization Ofhigh Performance Ceramic Membrane Having Nanometre Pores

نویسندگان

  • A. A. Hosseini
  • R. Soltani
چکیده

In this study, carbon nanotubes (CNTs) were grown directly in the pores of micro porous pyrex membranes and consequently ceramic membranes with very fine pores and high porosity were achieved. Our experiment was done in two stages. Initially cobalt powder with different percent was homogeneously mixed with pyrex powder. In order to produce row membranes, each of these mixtures were compacted in the form of tablet by use of a uniaxial cold press and in a stainless steel mould, and then the tablets were sintered at different temperature in an electric furnace. In second stage chemical vapor deposition (CVD) method was used to grow CNTs within the pores of the membranes. Argon and ammonia were used as carrier and reactive gas respectively and acetylene was used as the carbon feedstock. Morphology of the membranes before and after CVD process was studied by scanning electron microscopy (SEM). After CVD process CNTs were grown in the pores of membranes and the pores size was decreased but total porosity of the membrane was not changed considerably. In this way membranes with high porosity and fine pores were

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FABRICATION AND CHARACTERIZATION OFHIGH PERFORMANCE CERAMIC MEMBRANE HAVINGNANOMETRE PORES

Abstract: In this study, carbon nanotubes (CNTs) were grown directly in the pores of micro porous pyrex membranesand consequently ceramic membranes with very fine pores and high porosity were achieved. Our experiment was donein two stages. Initially cobalt powder with different percent was homogeneously mixed with pyrex powder. In order toproduce row membranes, each of these mixtures were compa...

متن کامل

Fabrication and Charge Modification of Ceramic Membranes Using Copper Nanoparticles for Desalination

Ceramic membranes are considered as alternatives for their polymeric counterparts due to highmechanical strength and thermal resistance; thus long lifetime. Usually, asymmetric ceramicmembranes are synthesized including several layers with different pore size distributionswith the top-layer playing the main separation role. Titania has several properties such asphotocatalytic activity and chemi...

متن کامل

Fabrication of solid-state nanopores with single-nanometre precision.

Single nanometre-sized pores (nanopores) embedded in an insulating membrane are an exciting new class of nanosensors for rapid electrical detection and characterization of biomolecules. Notable examples include alpha-hemolysin protein nanopores in lipid membranes and solid-state nanopores in Si3N4. Here we report a new technique for fabricating silicon oxide nanopores with single-nanometre prec...

متن کامل

Preliminary Characterization of Corn Cob Ash as an Alternative Material for Ceramic Hollow Fiber Membrane (CHFM/CCA)

Currently, exchanging trends in the expensive usage of ceramic materials such as alumina, zirconia etc. into economical ceramic raw sources have been studied extensively over the last decade for various technological applications. Despite the fact that this ceramic compound or elements offer a great performance and stability, especially at high temperature and corrosive or acidic conditions, th...

متن کامل

Cation Exchange Nanocomposite Membrane Containing Mg(OH)2 Nanoparticles: Characterization and Transport Properties

In this study, ion exchange nanocomposite membranes was prepared by addition of Mg(OH)2 nanoparticles to a blend containing sulfonated polyphenylene oxide and sulfonated polyvinylchloride via a simple casting method. Magnesium hydroxide nanoparticles were synthesized via a facile sono-chemical reaction and were selected as filler additive in fabrication of ion exchange nanocomposite membranes. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012